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Abstract
Two accurate, yet simple, analytic approximations to the integral of the Bessel
function J0 are presented. These first and second-order approximations are
obtained by improving on the recently developed method known as two-point
quasi-rational approximations. The accuracy of the first-order approximant is
better than 0.05. The second-order approximant is practically indistinguishable
from the true integral, even for very large values of the argument (overall
accuracy is better than 0.002 05). Our approximants are, in addition, analytic
and therefore replace with significant advantages both the well known power
series and the asymptotic formulae of the integral. Approximants to the
transmittance function of a plane wave through a circular aperture are derived, a
problem which arises in diffraction theory and particle scattering. The second-
order approximant to the transmittance is analytic too, and can be evaluated for
small and large values of the argument, just with a hand-calculator. Its accuracy
is better than 0.0011. As an extension, two first-order approximations to the
integrals of the Bessel functions Jν , of fractional order ν, are derived.

Mathematics Subject Classification: 65D20, 78A45

1. Introduction and summary

Bessel functions and integrals of Bessel functions often appear in several areas of physics and
technology. A particular case, in diffraction theory, is the evaluation of the transmittance by
a circular aperture which is given by the integral of the Bessel function J0(x). The numerical
computation of this integral can certainly be done by summing its power series. However,
the convergence of the series is extremely slow for very large values of the argument x.
Even for medium values of the argument, x = 5 say, a large number of series terms are
required to achieve good accuracy. The power series indeed become useless for not so large
values of x. There occurs the important case of the region of intermediate values of the
independent variable, where no simple numerical procedure exists for the computation of the
integral. To solve this problem, approximations to the integral of J0, which could be reliably
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used for any x, are derived here. The additional condition of analyticity is imposed on the
new approximations. Note that rational approximations and Padé approximants [1–3] have
been widely used for the evaluation of special functions in many cases of practical interest
in physics and engineering. However, in the case of the integral of J0 they do not provide a
good approximant, one valid for any value of x, even if high-degree polynomials are used.
On the other hand, a new so-called quasi-rational approximations method has been developed
[4–6] which simultaneously exploits both the power and the asymptotic expansions. Such a
method blends rational functions with other non-rational functions such as trigonometric and
power functions, i.e. a true quasi-rational approximation method. It does have appreciable
advantages, among them being acceptable accuracy and quick numerical evaluation. In a
recent work [4] the method was used to generate a quasi-rational approximant for the Bessel
function J0. Although this last approximant is integrable in closed form, the calculation is
still laborious. It became clear that a direct approximation to the integral of J0 itself would
be of greater interest, and clearly more useful. The advantages of such a type of approximant
would be appreciated in applied optics, fibre optics and particle scattering theory. For instance,
the problem of wave diffraction through a circular aperture leads to the integral of the Bessel
function J0; and the same happens when the transmittance of a circular aperture is evaluated
in the usual Kirchhoff vectorial theory of diffraction [7–9].

In this paper we develop direct quasi-rational approximations, of first and second degree,
for the evaluation of the transmittance through a circular aperture of a normally incident plane
wave; the second-degree approximant being the more accurate. The term ‘direct’ means that
the transmittance is to be obtained directly by approximating the integral of the Bessel function
J0 function itself, instead of first obtaining the approximation to J0, and then proceeding to
integrate it in a second step. It will be seen that our approximants are rather simple, fast, short
and easy to evaluate, even with a hand-calculator. Furthermore, their accuracy is very good
for any application and, in addition, valid along the whole positive real axis, i.e. no need to
separate into two (finite and asymptotic cases) recurrent computer algorithms. It is known that
the integral of J0 can be evaluated with high accuracy using available computational techniques
(for instance Chebyshev coefficients [10] have been determined for the integrals of J0 in the
separate intervals (0, x0) and (x1,∞)). However, the need for simple, short approximants
which can be quickly dealt with using just a hand-calculator, for any x, has not been simply
satisfied. Besides, the approximants here derived are analytic and may therefore replace the
exact integral in algebraic expressions, granting analytical differentiation and integration. This
is an additional and truly important asset of such approximants.

The method to find approximations exploited here is by no means exclusive to the Bessel
function J0. As an extension, a couple of first-order approximations to the fractional order
integrals of the first-kind Bessel function, namely,

∫ x

0 Jν(t) dt, ν > −1, are also derived. In
order to obtain good accuracy the form of the approximation for positive fractional order has
to be different from that for negative order. In both cases the coefficients of the approximants
are functions of the order ν. For each approximant the first terms of the power series, as well
as those of the asymptotic expansion, of the integral are equated with corresponding terms
of the approximant. The equations thus obtained lead to the approximant coefficients. The
procedure is described below in detail (sections 2 and 5).

2. Approximation procedure

Consider the problem of evaluating the integral

I (x) =
∫ x

0
J0(t) dt (1)
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with the known boundary condition I (∞) → 1. Firstly, note that in order to approximate the
function I with the quasi-rational method, its expansions around two points (at the origin and
at infinity) must be known. Both the power series and the asymptotic expansion for I (x) are
therefore required. The power series for I (x) is easily obtained by straightforward integration
of the power series [11] for J0,

I (x) = x − x3

12
+

x5

320
− x7

16 128
· · · (2)

while the asymptotic expansion [11] is given by

I (x) ≈ 1 − 1√
πx

{[
1 +

5

8x
+ O(1/x2)

]
cos x +

[
−1 +

5

8x
+ O(1/x2)

]
sin x

}
. (3)

A quasi-rational approximation to the function I given in equation (1) is sought taking
into account both expansions (2) and (3). The main criterion is that the approximant, here
denoted by An, should have the same singularities as the integral I , in the region of interest.
Thus the form of the approximants An must be written as

An(x) = 1 +
1√

1 + µ2x

[(∑n
i=0 Pix

i
)

cos x +
(∑n

i=0 pix
i
)

sin x
]

∑n
i=0 qixi

(4)

where n is the order of the approximation, and µ is a free parameter whose important role,
and the way to prescribe it, will be discussed presently.

Note that in equation (4) the exponent of the factor 1/(1 + µ2x) has to be 1
2 . It is written

in this way because for large values of x the approximation should have the same behaviour
as (sin x)/

√
x as well as that of (cos x)/

√
x, a behaviour characteristic of the asymptotic

expansion of the integral I (x).
The q, p and P coefficients in equation (4) are determined by choosing a suitable number

of terms from the power and asymptotic expansions. Some care, however, is required in
choosing them. Acceptable accuracy will be achieved only if a procedure to avoid the so-
called approximation defects [1, p 53] is available and applied. Fortunately, a good way to
overcome such potential difficulties is to exploit the presence of the additional free parameter
µ in equation (4). The coefficients of the approximant can then be determined as functions
of µ. In this way, a real value for µ can be simply chosen, such that the defects are avoided.
Clearly, a better way to enjoin the value of µ could be, for instance, to look for the least
maximum absolute error of the approximant. This is precisely the procedure followed below.
Other optimization criteria may be used, e.g. the least quadratic distance, or the least maximum
relative error. Note that these ways of prescribing the value of this free parameter µ rely on
former knowledge of the function being approximated. This, of course, is not always the case,
and in section 5 we describe an analytic method to find the best µ.

Given the simple form of the first-order quasi-rational approximation, its derivation begins
by defining the form of the denominator, and the parameter µ is chosen to be just equal to
one. On the other hand, in the case of the second-order approximant we determine all the
coefficients, P , p and q, as functions of the free parameter µ, and then the latter is later found
by optimization as already mentioned above.

3. Numerical results

Consider now the first-order approximant A1 to the integral of J0. Set n = 1 in equation (4).
The two coefficients, P1 andp1, are determined by the leading term of the asymptotic expansion
for I (equation (3)). The results are as follows:

P1 = − 1√
π

p1 = 1√
π
. (5)
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Figure 1. Graph of the integral of the Bessel function J0 (full curve) in the interval (0, 12). The first-
order direct two-point approximant (open circles) and the second-order approximant (dotted curve)
to the integral have been also plotted for comparison. The graph of the second-order approximant
is indistinguishable because of its very good accuracy (even for very large values of the arguments).

Using these values, the first-order approximation can be readily written as

A1(x) = 1 +
− (

1 + x/
√
π

)
cos x +

(
p0 + x/

√
π

)
sin x

(1 + x)3/2
≈

∫ x

0
J0(t) dt . (6)

Here P0 = −1 in order to satisfy the well known boundary condition of the integral of
the Bessel function J0: I1(x) = 0 at x = 0. To determine the remaining unknown coefficient
p0 the functions cos x, sin x and (1 + x)3/2 are replaced in equation (6), by the corresponding
power series of the functions, and the result is then compared with the power series given in
equation (2). Equating the coefficients of first-degree terms in x, one immediately obtains the
required value of p0,

p0 =
(
2 − √

π
)

2
√
π

. (7)

The first-order approximant A1 to the integral of the Bessel function J0 is therefore the
rather simple relation

A1(x) = 1 +

(
1 − √

π/2 + x
)

sin x − (√
π + x

)
cos x√

π(1 + x)3/2
(8)

easily calculable with just a hand-calculator for any x ∈ R. This expression gives the values of
the integral in equation (1) with a maximum error ε = 0.047, which occurs at about x = 1.8. It
may, therefore, be used to obtain results quickly, when one does not require very high accuracy.
The first-order approximant is plotted in figure 1, where for the sake of comparison the exact
integral of the Bessel function J0 has been plotted too. Note the high accuracy of this simple
approximant for x > 3.

Here the error ε has been found by a simple comparison of the approximant values with
those given by the exact function. This is, in fact, the best way to find the error. However,
in the case where the exact function values cannot be calculated, a theoretical bound for the
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error can be found by an analytical procedure described in [5]. Following this procedure the
next terms of both the power series and the asymptotic expansion of the difference A1(x)–I (x)
have to be found, which in the present case leads to

A1(x) − I (x) =
(

1√
π

− 5

8

)
x2 + O(x3) = −0.051x2 + O(x3)

for the power series, and to

A1(x) − I (x) ≈ 1√
πx

{ [(
1√
π

− 5

8

)
1

x
+ O(x3)

]
sin x +

[(
17
8 − √

π
) 1

x
+ O(x3)

]
cos x

}

for the asymptotic expansion. Looking for the upper bound for the error, the abscissa x0

at which the maximum theoretical error ε1 occurs has to be determined [5]. From the two
previous equations one obtains

0.051x2
0 = (0.430 + 0.200)

1

x
3/2
0

⇔ x0 = 1.840.

The theoretical bound for the error [5] is then ε1 = 0.051(1.840)2 = 0.173. This is
about three times as large as the error found above (ε = 0.047) by direct comparison of the
approximant with the exact function. As discussed in [5] the theoretical bound for the error is
usually larger that the actual error. Therefore, when possible it is better to find the errors using
the numerically calculated values of the exact function.

Consider now the derivation of a second-degree direct approximation to the integral of the
Bessel function J0. Using a procedure analogous to the one described above for the first-degree
approximant, one begins by writing A2,

A2(x) = 1 +
(P0 + P1x + P2x

2) cos x + (p0 + p1x + p2x
2) sin x√

π(1 + µ2x)1/2(q0 + q1x + q2x2)
. (9)

For the sake of simplicity one begins by setting q0 = 1 in equation (9). Also, to recover the
boundary zero value, of the integral at x = 0, one must set P0 = −√

π in equation (9). Note
that one can also prescribe the coefficients p2, P2 of the second-order terms in the numerator
of the approximant. In effect, for large values of the argument x, and from a straightforward
comparison of the leading terms of the coefficients of cos x and sin x, which appear in the
asymptotic formula (3), with the corresponding terms of our approximant (9), one obtains

1√
πx

sin x ∼= p2x
2

√
πµ

√
xq2x2

sin x ⇒ p2 = µq2

and

− 1√
πx

cos x ∼= P2x
2

√
πµ

√
xq2x2

cos x ⇒ P2 = −µq2.

To determine the remaining coefficients in equation (9), one has to use the two leading
terms of the asymptotic expansion (3), and one term each from the sine function and the cosine
function. Then equate the coefficients of the terms of the expression obtained (up to third
order x3) with the corresponding terms of the power series (2). After some lengthy, but, in
fact, easy, algebraic work, one obtains expressions for the whole set of coefficients of the
sought approximant, namely,

P0 = −√
π P1 = −µ

[
q1 + q2

(
1

2µ2
+

5

8

)]
P2 = −µq2 (10a)

p0 = q1
(−√

π + µ
)

+ q2

(
1

2µ
+

5

8
µ

)
− √

π

(
µ2

2
− 1

)

p1 = µ

[
q2

(
−5

8
+

1

2µ2

)
+ q1

] (10b)
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p2 = µq2 q0 = 1 q1 = β

α
q2 +

γ

α
q2 =

(
bγ

dα
+

c

d

)/(
1 − bβ

dα

)
(10c)

where the real quantities d, b, c, α, β and γ are given by the following functions of the free
parameter µ:

d =
√
π

2

(
2 − µ2

) − 29

24
µ − 1

6µ
b = µ

3
+

√
π

2

(
4 − 12µ2 − 3µ4

12

)

c =
√
π

2

(−2 + 2µ2 + 3µ4 + µ6

12

)
α = −µ −

√
π

2

(−2 + µ2
)

β = −13

8
µ +

1

2µ2
+

√
π γ =

√
π

2

(
4 − 4µ2 − µ4

4

)
.

(11)

Apart from q0 and P0, the remaining coefficients of the approximant are defined as
functions of the free parameter µ. As already stated above, for some values of µ defects
may arise, and this parameter is to be chosen with care. Yet there is ample freedom in the
choice of µ, an advantage exploited here to improve the accuracy of the approximant.

Since, as mentioned before, there are several alternative ways of determining the best
value for the parameter µ, it is useful to discuss the matter in some detail. The procedure
described below is general and can be applied to any special function, therefore it is better
to discuss the point within a general framework. Should the special function be known via
its power series or by its asymptotic expansion, then the best value of µ can be analytically
determined using an additional term of the power series, or one more term from the asymptotic
expansion. This will lead to an additional algebraic equation in the parameter µ and to the set
of equations (10). In the present case it happened that the derivation of such equations was
far easier when the additional term was taken from the asymptotic expansion, rather than from
the power series. Taking then one term more of the asymptotic expansion of the integral of J0

gives

I (x) ≈ 1 − 1√
πx

{ [
1 +

5

8x
− 129

128x2
+ O(1/x3)

]
cos x

+

[
−1 +

5

8x
+

129

128x2
+ O(1/x3)

]
sin x

}
. (12)

The two second-order terms just added are readily obtained using the coefficients
recurrence formula [11, equation (11.1.2)] for the asymptotic expansion of the integral. Since
only one equation is needed to find µ the additional term to be considered could be either
− 129

128x2 sin x, or − 129
128x2 cos x. Selecting here the first and equating with the expansions for the

coefficients of sin x in the second-order approximant equation (9) one obtains

µq2

(
1 − 5

8x
− 129

128x2
+ · · ·

) (
1 +

q1

q2x
+

1

q2x2

)

= p2

(
1 +

p1

p2x
+

p0

p2x2

) (
1 − 1

2µ2x
+

3

8µ4x2
+ · · ·

)
. (13)

After a few additional algebraic steps the following equation ensues:
√
π

2
µ5 +

(
1 − 13q1

8
− 169

128

)
µ4 +

√
π(q1 − 1)µ3 +

(
q1

2
− 13

16

)
µ2 − 1

8
= 0 (14)

with q1 and q2 given as in (10c) above. Solving equation (15) one obtains µ = 1.021 471, the
sought value for the free parameter of the approximant.

Although the procedure just described should always give good results, it is clear the the
bestµ value is that one which gives the least minimum error. Therefore, should the values of the
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function being approximated be known for several points, µ could be obtained by minimizing
the distance to those points. In some cases, for example, Bessel functions, we can use as many
points as we like.

When we plot the maximum absolute error of our second-order approximant to the integral
of the Bessel function J0 as a function of the parameter µ, using equations (10) and (11), the
optimum value µ = 1.02 is found, which incidentally happens to correspond to a cusp in the
corresponding function plot (not shown in this paper). The maximum absolute error of the
second-order approximant is ε = 0.002 042, for the optimum value µ = 1.02. This value is
very close indeed to the previous one µ = 1.021 471, found analytically with the procedure
based on the addition of one more term to the asymptotic expansion described before.

After substituting the value µ = 1.02 into equations (10) and (11), the P, p, q coefficients
of approximant A2 are found,

P0 = −1.772 4540 P1 = −1.160 5640 P2 = −0.206 6663

p0 = 0.391 3175 p1 = 0.902 2309 p2 = −P2

q0 = 1 q1 = 0.913 8008 q2 = 0.202 6140.

In figure 1, as well as plotting the first-order approximant, we have plotted our second-
order approximant too. But now, because of the large improvement in accuracy obtained
with our second approximation, the graph of the latter cannot easily be distinguished from the
graph of the integral of the Bessel function J0. Large scale-up factors have to be used to show
the errors of the approximant. The two curves remain indistinguishable even for very large
values of the argument. The maximum absolute error of the second-order direct approximation
is found to be less than 0.002 05 (for the chosen µ = 1.02). It occurs at the argument value
x ≈ 2.01. In comparison with the case of the first-order approximant, we note that the absolute
error is reduced, actually divided by about 25. In figure 2 we plot the small errors (< 0.05) of
the two approximants. Note that the error of the second approximant (the full curve) has to be
plotted amplified by a factor of 10.

Figure 2. Small errors of the first- and second-order approximants to the integral of the Bessel
function J0. Note that for the second-order approximant (full curve) the error has to be amplified
by 10. The dotted curve represents the error of the first-order approximant.
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It is interesting to point out that when resorting to the inclusion of a free parameter in a
given approximant, its accuracy could also be good even if µ is not exactly the optimum value,
but relatively close to it. For instance, if instead of µ = 1.02 the value µ = 1 is substituted in
the second-order approximant then the maximum error found is still only ≈ 5 × 10−3, which
is also a very good result. As far as µ is concerned the key point is always to choose a positive
value in order to avoid the defects (an extraneous pole and a nearby zero) which are so common
in the Padé approximants [1, pp 53–55], and that can also surface in our approximations.

4. An application

As an application the two approximants derived above are used to evaluate the transmittance
T of a plane monochromatic wave by a circular aperture of known radius a, in an infinite
plane conducting screen, under normal incidence. This is a standard problem in diffraction
of electromagnetic waves and in particle scattering. The transmittance of such an aperture is
given by

T (a) = 1 − I (2ka)

2ka
(15)

where k is the wavenumber of the incident wave. First- and second-order approximants to this
transmittance are obtained when the two approximants A1, A2 are sequentially replaced in
equation (15). The errors, grossly amplified, of the two resulting transmittance approximant
functions appear plotted in figure 3 (the broken curve for the first-order approximant error
is amplified by a factor of 1000; the full curve for the error of the second-order one after
amplification by a factor of 10 000).

In a previous work [4] another approximant to the transmittance T was presented. It was
obtained by integrating an approximant to the Bessel function J0 itself, that is to say using an

Figure 3. Amplified errors of the direct two-point quasi-rational approximants to the transmittance
of a circular aperture. The full curve is the error, after amplification by a factor of 10 000, of our
second-degree approximant. The dotted curve represents the error of the first-order approximant
(present work) after amplification by 1000. For comparison, the error of an (indirect) approximation
to the transmittance (from an earlier work) is also shown (open circles), amplified 1000 times.
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indirect method (first an approximant to J0 was obtained, then an approximant to the integral
I , and finally the approximant to transmittance T ). The error of this previous approximant is
also plotted (broken curve) in figure 3 for the sake of comparison with the approximations of
this paper.

5. Approximation to the integral of the Bessel function Jν , ν > −1

In this section the procedure presented in sections 2 and 3 is applied to obtain approximations
to the function Iν defined by

Iν(x) =
∫ x

0
Jν(t) dt ν > −1. (16)

This integral tends to 1 in the limit x → ∞ [11, equation (11.4.17)]. It is possible to
obtain a power-series expansion for Iν by integrating the known power series of Jν [8, 11].
Moreover, the required asymptotic expansion of Iν is obtained, assuming that it has a form
similar to that of the asymptotic formula of Jν , with as yet unknown coefficients. But those
coefficients may be found by applying the well known method of undetermined coefficients to
the derivative of Iν and to Jν itself. Therefore, one obtains the power series

Iν(x) = xν+1

2ν

∞∑
j=0

(−1)j

j ! (2j + ν + 1) ! (j + ν + 1)

(x

2

)2j
x  1 (17)

and the required asymptotic expansion

Iν(x) = 1 +
β√
πx

{
1 +

4ν2 − 5

8

α

β

1

x
± · · ·

}
sin x

− α√
πx

{
1 − 4ν2 − 5

8

β

α

1

x
± · · ·

}
cos x x � 1 (18)

where α and β are defined as

α =
√

2 sin

[(
ν

2
+

1

4

)
π

]
β =

√
2 cos

[(
ν

2
+

1

4

)
π

]
.

Two versions of the sought first-order approximant are examined here. These are denoted
1Iν(x) and 2Iν(x), respectively, and have the forms,

1Iν(x) = xν

(1 + x2)ν/2

[
1 +

(p0 + p1x) sin x + (P0 + P1x) cos x

(1 + x)3/2

]
(19a)

2Iν(x) = xν+1

(1 + x4)ν/4

[
1 +

(p′
0 + p′

1x) sin x + (P ′
0 + P ′

1x) cos x

(1 + x)3/2

]
. (19b)

The coefficients of the approximants are obtained by considering the j = 0 term in the
power series and the two leading terms of the asymptotic expansions of sin x and cos x. The
condition that the integral of Jν from zero to infinity is one is already ensured. Note that in
the power-series expansion of the approximant denoted 1Iν(x) there is a term in xν whose
coefficient, in fact, must be zero, since such a term does not appear in the expression for the
integral Iν (equation (17)). Furthermore, note that the coefficient of the term in xν+1 must
be 2−ν(!(ν + 2))−1. Therefore, there are two equations from the power series and two more
from the leading terms of the asymptotic expansion. In this way there are the same number of
equations as unknowns and the four approximant parameters can be found. In the case of the
other approximant 2Iν(x) there is no power term in xν , then the coefficients of xν+1 and xν+2

must be used instead. Note that the coefficient of xν+2 in the power series of Iν is zero.
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Figure 4. Absolute maximum errors of the two first-order approximants 1Iν(x) and 2Iν(x) to the
integral of the Bessel function Jν in the interval x ∈ (0, 10) as a function of the fractional order
ν ∈ (0, 10). The full curve represents the maximum absolute errors of the approximant 1Iν(x).
The broken curve corresponds to similar errors for 2Iν(x).

After some steps all the approximant parameters (pj and Pj ) are found and their
expressions ensue,

1Iν(x) = xν

(1 + x2)ν/2

{
1 +

[ (
α +

√
π

2ν!(ν + 2)
− 3

√
π

2
+ βx

)
sin x − (√

π + αx
)

cos x

]

×[√
π(1 + x)3/2

]−1
}

(20a)

2Iν(x) = xν+1

(1 + x2)(ν+1)/4

{
1 +

[ (
α +

3
√
π

2ν+1!(ν + 2)
− 3

√
π

2
+ βx

)
sin x

+

( √
π

2ν+1!(ν + 2)
− √

π + αx

)
cos x

][√
π(1 + x)3/2

]−1
}
. (20b)

In figure 4 we show the maximum absolute errors of the two approximants 1Iν(x) and
2Iν(x), as a function of fractional order ν ∈ (−1, 1.5). As expected the previous results are
recovered, i.e. for ν = 0 the new approximant 1Iν(x) coincides with the approximant A1(x)

given in equation (6). In figure 4 one sees that the approximant is very good for positive
ν, while its maximum absolute error becomes large in the region where ν is negative (for
ν < −0.5). On the other hand, 2Iν(x) is good for negative ν, particularly for ν ≈ −1, but not
close to −0.5.

It is also relevant to examine the behaviour of the approximants for small, intermediate
and large values of the argument x. In figure 5 the exact curves for Iν and its approximant
curves are shown for three values of the fractional order, ν = − 1

2 , 0 and 1
2 . At the scale of

the plot the approximant curves and the exact ones are almost coincident for ν = 0 and 1
2 . As

expected, errors are negligible for small and large values of the argument x. In the case of
ν = − 1

2 , the largest error occurs in the neighbourhood of x = 1. The truly important point
to note is that the minima and maxima of the approximant occur at points very close to where
the exact ones occur, which is the crucial fact for most applications.
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Figure 5. Exact function Iν(x) = ∫ x

0 Jν(t) dt plotted versus the argument x, for three values of the
fractional order ν = − 1

2 , 0 and 1
2 (full squares, full and broken curves, respectively). The curves

for the three first-order approximants to the same integrals are also shown (open squares, dots and
open circles, respectively) for the same values of ν.

6. Conclusions

In this work two new, simple and analytic, approximations to the integral of the Bessel
function J0 were derived. Apart from being easily calculable, the two approximants have
good accuracy, particularly the second-order one. The maximum absolute departure of
the latter from the true value of the integral is less than 0.002 05 and occurs at x ≈ 2,
just at the beginning of the region of intermediate values of the argument. The present
approximants are very accurate for large values of the argument. The two approximants
found have then been applied to obtain first- and second-order approximants to the coefficient
of transmittance of a plane wave through a circular aperture of known radius. Maximum
departures of these approximants from the exact transmittance values are less than 0.032
and 0.0012, respectively. The larger errors occur for intermediate values of the argument
(between 1.5 and 5.5), and the errors are truly negligible for large values of the argument. As
a comparison, the maximum error of the approximant in a previously published work [4] is
about 0.01. The present second-order, direct quasi-rational, approximant is about 10 times
better. In addition the new approximants have the advantages of being simpler, and a lot easier
to evaluate. Moreover, being directly integrable and derivable, the new approximants have a
larger potential for applications, for instance should further mathematical analysis be required
in the applications.

Finally, note that with present (since 1994) commercially available computer software
one can also evaluate the integral of the Bessel function J0 using the power series and the
asymptotic expansions. But again, two computer codes have to be written, and in addition
their intervals of application have to be accurately estimated in advance for each particular
application. As soon as the integral argument goes beyond medium values (x = 6, say), a
very large number of terms of the power series are required to achieve acceptable accuracy.
The second-order approximant presented in this work means: a single short code, manageable
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with even a hand-calculator, which is both derivable and integrable, and of very good accuracy
from zero practically to infinity.

As an extension a couple of first-order approximants to the integral of the Bessel function
of fractional order ν > −1 have also been derived. The first of them (equation (20a)) has
very good accuracy (maximum error of less than 0.05) for positive values of ν, and for ν = 0.
Its errors increase practically linearly (figure 4), and eventually become large for ν less than
about −0.5. The second first-order approximant (equation (20b)) has acceptable accuracy for
negative values of ν, except very close to ν = − 1

2 . The simple first-order approximants to
the general integral of Jν do not have such excellent accuracy but they are still sufficient for a
large number of applications.

It is also possible to derive higher-order approximations to the integral Iν of higher
accuracy, using the method described in this work. But already, for the lowest higher order, that
is for the second order, the algebraic process to derive a general approximation, i.e. one valid
for any ν, quickly becomes very difficult indeed. Second-order approximants to the integral
Iν have to be developed for each particular value of ν instead, as was done in this paper for the
integral of the Bessel function J0 (section 3).
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[1] Baker G A Jr and Graves-Morris P R 1981 Padé Approximants, part I: Basic Theory (Encyclopaedia of
Mathematics and its Applications vol 13) (Cambridge: Cambridge University Press)
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